gedi2py.plotting.convergence¶
- gedi2py.plotting.convergence(adata, *, which='all', key='gedi', log_scale=True, title=None, figsize=None, show=None, save=None, ax=None, return_fig=False)[source]¶
Plot GEDI training convergence.
Visualizes how model parameters evolved during training to assess convergence. Available metrics:
sigma2: Noise variance (should stabilize)dZ: Change in metagenes Z per iterationdA: Change in pathway coefficients A (if using pathway priors)do: Change in offsets o
- Parameters:
adata (
AnnData) – Annotated data matrix with GEDI results.which (
Literal['sigma2','dZ','dA','do','all'], default:'all') – Which convergence metric(s) to plot: -"sigma2": Only noise variance -"dZ": Only metagene changes -"dA": Only pathway coefficient changes -"do": Only offset changes -"all": All available metrics (default)key (
str, default:'gedi') – Key inadata.unswhere GEDI results are stored.log_scale (
bool, default:True) – IfTrue, use log scale for y-axis (except sigma2).figsize (
tuple[float,float] |None, default:None) – Figure size (width, height) in inches.show (
bool|None, default:None) – IfTrue, show the figure.ax (
Axes|None, default:None) – Pre-existing axes for the plot. Only valid for single metric.return_fig (
bool, default:False) – IfTrue, return the figure object.
- Returns:
Depending on ``return_fig``
- Return type:
Figure,Axes, orNone.
Examples
>>> import gedi2py as gd >>> gd.tl.gedi(adata, batch_key="sample", n_latent=10) >>> gd.pl.convergence(adata) >>> gd.pl.convergence(adata, which="sigma2", log_scale=False)