knitr::opts_knit$set(root.dir = rprojroot::find_rstudio_root_file())
options(
readr.show_progress = FALSE,
digits = 2,
scipen = 8,
future.globals.maxSize = +Inf
)
library(tidyverse)
library(scran)
library(scater)
library(pheatmap)
theme_set(theme_bw())
data_dir <- "./data"
figures_dir <- file.path("./figures", "scrnaseq")
plot_gene <- function(gene) {
p <- plotExpression(sce10x,
features = gene,
x = "sample",
exprs_values = "logcounts",
colour_by = "condition",
point_size = .5
) +
facet_wrap(~ colData(sce10x)$clusters, ncol = 1) +
labs(title=gene)
ggsave(file.path(figures_dir, paste0(gene, "_violin_expression.pdf")), p)
return(p)
}
plot_gene_heatmap <- function(gene) {
p <-
ggplot(dt, aes(umap1,
umap2,
colour = assay(sce10x_stem, "logcounts")[gene, ]
)) +
geom_point(size = .5) +
stat_density_2d(alpha = 0.4) +
scale_colour_viridis_c(option = "magma", direction = -1, name = gene) +
annotate("text",
x = c(-1, -1, 14),
y = c(3, -3, 2),
label = c("stem 1", "stem 2", "stem 3"),
colour = "black", size = 4
) +
theme_classic()
ggsave(file.path(figures_dir, "stem_expression", paste0(gene, "_umap_expression.pdf")), p)
return(p)
}
plot_gene_heatmap_facet <- function(gene) {
p <-
ggplot(dt, aes(umap1,
umap2,
colour = assay(sce10x_stem, "logcounts")[gene, ]
)) +
geom_point(size = .5) +
stat_density_2d(alpha = 0.4) +
scale_colour_viridis_c(option = "magma", direction = -1, name = gene) +
facet_wrap(~condition, ncol = 1) +
theme_classic()
ggsave(file.path(figures_dir, "stem_expression", paste0(gene, "_umap_expression_facet.pdf")), p)
return(p)
}
sce10x <-
readRDS(file.path(
data_dir,
"preprocessed",
"sce10x_filtered_final.rds"
))
table(colData(sce10x)$clusters, colData(sce10x)$sample)
yng1 yng2 yng3 aged1 aged2 aged3 aged4
fap_1 295 284 389 1630 1585 1134 833
fap_2 203 106 248 390 424 434 194
macrophage 282 274 398 58 245 149 189
stem_1 397 661 541 370 404 185 435
stem_2 549 1030 379 151 278 141 304
stem_3 253 222 129 0 0 0 0
sce10x_stem <- sce10x[, colData(sce10x)$celltype == "stem"]
sce10x_fap <- sce10x[, colData(sce10x)$celltype == "fap"]
sce10x_macrophage <- sce10x[, colData(sce10x)$celltype == "macrophage"]
table(colData(sce10x_stem)$clusters, colData(sce10x_stem)$condition)
yng aged
stem_1 1599 1394
stem_2 1958 874
stem_3 604 0
dt_genes <-
t(assay(sce10x_stem, "counts")[c("Pax7", "Myf5"), ]) %>%
as.matrix() %>%
as_tibble() %>%
mutate(Pax7_Myf5 = case_when(
Pax7 > 0 & Myf5 > 0 ~ "Pax7+Myf5+",
Pax7 > 0 & Myf5 == 0 ~ "Pax7+Myf5-",
Pax7 == 0 & Myf5 > 0 ~ "Pax7-Myf5+",
Pax7 == 0 & Myf5 == 0 ~ "Pax7-Myf5-"
))
ggplot(
bind_cols(dt_genes %>% select(Pax7_Myf5), colData(sce10x_stem) %>%
as_tibble() %>%
mutate(log10_sum = log10(sum)) %>%
select(log10_sum, clusters, condition, clusters_condition)),
aes(log10_sum)
) +
geom_histogram(aes(fill = clusters_condition), bins = 50) +
facet_wrap(~Pax7_Myf5) +
theme_classic()
ggplot(
bind_cols(dt_genes %>%
select(Pax7_Myf5), colData(sce10x_stem) %>%
as_tibble() %>%
mutate(log10_sum = log10(sum)) %>%
select(log10_sum, clusters, condition, clusters_condition)),
aes(log10_sum)
) +
geom_histogram(aes(fill = Pax7_Myf5), alpha = 0.7, bins = 50) +
facet_wrap(~clusters_condition) +
theme_classic()
table(dt_genes$Pax7_Myf5, sce10x_stem$clusters)
stem_1 stem_2 stem_3
Pax7-Myf5- 347 132 88
Pax7-Myf5+ 263 142 47
Pax7+Myf5- 635 443 173
Pax7+Myf5+ 1748 2115 296
table(dt_genes$Pax7_Myf5, sce10x_stem$condition)
yng aged
Pax7-Myf5- 117 450
Pax7-Myf5+ 216 236
Pax7+Myf5- 479 772
Pax7+Myf5+ 3349 810
table(dt_genes$Pax7_Myf5, sce10x_stem$clusters_condition)
stem_1_aged stem_1_yng stem_2_aged stem_2_yng stem_3_yng
Pax7-Myf5- 328 19 122 10 88
Pax7-Myf5+ 167 96 69 73 47
Pax7+Myf5- 463 172 309 134 173
Pax7+Myf5+ 436 1312 374 1741 296
plotExpression(sce10x_stem,
features = "Pax7",
x = c("Myf5"),
exprs_values = "logcounts",
colour_by = "clusters",
point_size = .7,
point_alpha = 0.8,
ncol = 4
) +
coord_fixed() +
facet_wrap(~ colData(sce10x_stem)$condition)
dt <- bind_cols(
reducedDim(sce10x_stem, "mnn_umap") %>%
as_tibble(),
colData(sce10x_stem) %>%
as_tibble()
)
p1 <-
ggplot(dt, aes(umap1,
umap2,
colour = clusters
)) +
geom_point(size = 1) +
scale_colour_viridis_d(option = "plasma") +
theme_classic()
p1
ggsave(file.path(figures_dir, "umap", "umap_mnn_stem.pdf"), p1)
Saving 7.29 x 4.5 in image
p2 <- ggplot(dt, aes(umap1,
umap2,
colour = clusters
)) +
geom_point(size = 1) +
scale_colour_viridis_d(option = "plasma") +
theme_classic() +
facet_wrap(~condition, ncol = 2)
p2
ggsave(file.path(figures_dir, "umap",
"umap_stem_clusters_condition.pdf"), p2)
Saving 7.29 x 4.5 in image
p3 <- ggplot(dt, aes(umap1,
umap2,
colour = condition
)) +
geom_point(size = 1, alpha = 0.7) +
scale_colour_viridis_d(option = "plasma") +
theme_classic()
p3
ggsave(file.path(figures_dir, "umap",
"umap_stem_clusters_condition_color.pdf"), p3)
Saving 7.29 x 4.5 in image
Warning messages:
1: In readChar(file, size, TRUE) : truncating string with embedded nuls
2: In readChar(file, size, TRUE) : truncating string with embedded nuls
3: In readChar(file, size, TRUE) : truncating string with embedded nuls
4: In readChar(file, size, TRUE) : truncating string with embedded nuls
dt_fap <-
bind_cols(
reducedDim(sce10x_fap, "mnn_umap") %>%
as_tibble(),
colData(sce10x_fap) %>%
as_tibble()
)
p4 <-
ggplot(dt_fap, aes(umap1,
umap2,
colour = clusters
)) +
geom_point(size = 1) +
scale_colour_viridis_d(option = "plasma") +
theme_classic()
p4
ggsave(file.path(figures_dir, "umap",
"umap_mnn_fap.pdf"), p4)
Saving 7.29 x 4.5 in image
p5 <- ggplot(dt_fap, aes(umap1,
umap2,
colour = clusters
)) +
geom_point(size = 1) +
scale_colour_viridis_d(option = "plasma") +
theme_classic() +
facet_wrap(~condition, ncol = 2)
p5
ggsave(file.path(figures_dir, "umap",
"umap_fap_clusters_condition.pdf"), p5)
Saving 7.29 x 4.5 in image
dt_macrophage <-
bind_cols(
reducedDim(sce10x_macrophage, "mnn_umap") %>%
as_tibble(),
colData(sce10x_macrophage) %>%
as_tibble()
)
p6 <-
ggplot(dt_macrophage) +
geom_point(aes(umap1,
umap2,
colour = clusters
),
size = 1,
alpha = 1
) +
theme_classic() +
facet_wrap(~condition, ncol = 2)
p6
ggsave(file.path(figures_dir, "umap",
"umap_mnn_macrophage.pdf"), p6)
Saving 7.29 x 4.5 in image
cytokines <- c("Il6", "Il15", "Txlna","Il18", "Tnf", "Il10" )
map(cytokines, plot_gene)
Saving 7 x 7 in image
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
irf <- read_csv(file.path(
Warning messages:
1: In readChar(file, size, TRUE) : truncating string with embedded nuls
2: In readChar(file, size, TRUE) : truncating string with embedded nuls
3: In readChar(file, size, TRUE) : truncating string with embedded nuls
4: In readChar(file, size, TRUE) : truncating string with embedded nuls
5: In readChar(file, size, TRUE) : truncating string with embedded nuls
6: In readChar(file, size, TRUE) : truncating string with embedded nuls
7: In readChar(file, size, TRUE) : truncating string with embedded nuls
data_dir,
"gene_lists",
"irf.txt"), col_names = FALSE)
Parsed with column specification:
cols(
X1 = [31mcol_character()[39m
)
irf <- str_to_title(irf %>% pull(X1))
There were 21 warnings (use warnings() to see them)
irf <- irf[irf %in% rownames(sce10x_stem)]
irf
[1] "Stat2" "Nfatc2" "Nfat5" "Nfatc3" "Irf1" "Irf7" "Nfatc4" "Irf9" "Nfatc1" "Gfi1" "Stat1" "Tcf7"
[13] "Tcf7l2" "Jun" "Batf" "Batf" "Foxo1" "Irf4" "Neurog2" "Tcf7l1" "Irf8" "Prdm4" "Esx1" "Hoxb7"
[25] "Fosl1" "Stat3" "Twist1" "Twist2"
map( irf , plot_gene_heatmap_facet)
Saving 7 x 7 in image
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
[[13]]
[[14]]
[[15]]
[[16]]
[[17]]
[[18]]
[[19]]
[[20]]
[[21]]
[[22]]
[[23]]
[[24]]
[[25]]
[[26]]
[[27]]
[[28]]
myogenic_factors <- c("Pax7", "Myf6", "Myf5", "Myod1", "Myog")
myogenic_factors_plots <- map(myogenic_factors, plot_gene)
Saving 7 x 7 in image
myogenic_factors_plots
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
myogenic_factors_heatmaps <- map(myogenic_factors, plot_gene_heatmap)
Saving 7 x 7 in image
myogenic_factors_heatmaps
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
HALLMARK_G2M_CHECKPOINT <- c("Ccnb2", "Cenpa", "H2az1", "Hmgn2", "Mcm5", "Stmn1")
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION <- c("Acta2", "Lgals1")
top_clust3vs12y_up <- c("Myog", "Pclaf", "Cdkn1c", "Stmn1", "Ctnna2", "Cfap77", "Ankrd10", "Lsm6", "Spats2l", "Cdk2ap1")
map(HALLMARK_G2M_CHECKPOINT, plot_gene_heatmap)
Saving 7 x 7 in image
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
map(HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION, plot_gene_heatmap)
Saving 7 x 7 in image
[[1]]
[[2]]
map(top_clust3vs12y_up, plot_gene_heatmap)
Saving 7 x 7 in image
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
HALLMARK_G2M_CHECKPOINT_down <- c("Mt2")
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION_down <- c("Crlf1", "Igfbp4", "Sdc4")
HALLMARK_UV_RESPONSE_DN <- c("Igfbp5", "Kcnma1", "Ltbp1")
top_clust3vs12y_down <- c(
"Gpx3", "Hs6st3", "Nppc", "Chodl", "Apoe",
"Mt1", "Pdzd2", "Tnxb", "Rora", "Tmtc2",
"Igfbp4", "Meg3", "Serping1", "Erfe", "Id3"
)
map(HALLMARK_G2M_CHECKPOINT_down, plot_gene_heatmap)
Saving 7 x 7 in image
[[1]]
map(HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION_down, plot_gene_heatmap)
Saving 7 x 7 in image
[[1]]
[[2]]
[[3]]
map(HALLMARK_UV_RESPONSE_DN, plot_gene_heatmap)
Saving 7 x 7 in image
[[1]]
[[2]]
[[3]]
map(top_clust3vs12y_down, plot_gene_heatmap)
Saving 7 x 7 in image
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
[[13]]
[[14]]
[[15]]
HALLMARK_TNFA_SIGNALING_VIA_NFKB <- c("Nfkb1", "Pmepa1", "Sdc4")
top_clust2vs1_up <- c(
"Col8a1", "Pakap_ENSMUSG00000038729.24", "Mt1", "Dnah7a", "Arid5b",
"Samd4", "Mpp7", "Asb5", "9030624G23Rik", "Mt2", "Gm48228", "Emp1"
)
map(HALLMARK_TNFA_SIGNALING_VIA_NFKB, plot_gene_heatmap)
Saving 7 x 7 in image
[[1]]
[[2]]
[[3]]
map(top_clust2vs1_up, plot_gene_heatmap)
Saving 7 x 7 in image
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
HALLMARK_TNFA_SIGNALING_VIA_NFKB_stem1 <- c("Fos", "Jun", "Egr1", "Ier2", "Socs3")
top_stem1 <- c("Gm26802", "ENSMUSG00000052837.6", "Ier5l")
map(HALLMARK_TNFA_SIGNALING_VIA_NFKB_stem1, plot_gene_heatmap)
Saving 7 x 7 in image
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
map(top_stem1, plot_gene_heatmap)
Saving 7 x 7 in image
[[1]]
[[2]]
[[3]]
HALLMARK_ALLOGRAFT_REJECTION_APOPTOSIS <- c("Ccl11", "Anxa1", "Dcn", "Timp3")
top_aging_up <- c(
"Frmpd4", "Grid2", "Csmd1", "P2ry14", "Mbd1",
"Mt1", "Glis3", "Eya2", "Aff1", "Myo1d", "Sugct",
"Spock3", "Ntn4", "Thsd7a", "Smim3", "Ell2", "Cfh"
)
map(HALLMARK_ALLOGRAFT_REJECTION_APOPTOSIS, plot_gene_heatmap_facet)
Saving 7 x 7 in image
[[1]]
[[2]]
[[3]]
[[4]]
map(top_aging_up, plot_gene_heatmap_facet)
Saving 7 x 7 in image
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
[[13]]
[[14]]
[[15]]
[[16]]
[[17]]
HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION_MYOGENESIS <-
c(
"Col3a1", "Col4a1", "Col4a2", "Crlf1", "Gas1", "Lama2",
"Lamc1", "Lgals1", "Mest", "Mmp2", "Pdlim4", "Serpinh1",
"Sparc", "Tagln", "Vim", "Cnn3", "Gsn", "Igf1"
)
HALLMARK_MYC_TARGETS_V1 <- c("Eef1b2", "Hsp90ab1", "Ppia", "Rack1", "Rpl14", "Rpl22", "Rpl34", "Rplp0", "Rps3", "Rps6")
HALLMARK_P53_PATHWAY <- c("Cd81", "Cd82", "Rack1", "Rpl36", "Rps12", "S100a10", "Zfp36l1")
HALLMARK_TNFA_SIGNALING_VIA_NFKB <- c("Ccnd1", "Marcks", "Msc")
top_aging_down <- c("Dgkg", "Sorbs2", "Itm2a", "Kif21a", "mt-Co2", "mt-Nd3", "mt-Atp6", "mt-Co3", "Meg3", "Tmsb10", "Apoe", "Dag1")
map(HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION_MYOGENESIS, plot_gene_heatmap_facet)
Saving 7 x 7 in image
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
[[13]]
[[14]]
[[15]]
[[16]]
[[17]]
[[18]]
map(HALLMARK_MYC_TARGETS_V1, plot_gene_heatmap_facet)
Saving 7 x 7 in image
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
map(HALLMARK_P53_PATHWAY, plot_gene_heatmap_facet)
Saving 7 x 7 in image
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
map(HALLMARK_TNFA_SIGNALING_VIA_NFKB, plot_gene_heatmap_facet)
Saving 7 x 7 in image
[[1]]
[[2]]
[[3]]
map(top_aging_down, plot_gene_heatmap_facet)
Saving 7 x 7 in image
[[1]]
[[2]]
[[3]]
[[4]]
[[5]]
[[6]]
[[7]]
[[8]]
[[9]]
[[10]]
[[11]]
[[12]]
moderated_lfc_leg_muscle <-
Warning messages:
1: In readChar(file, size, TRUE) : truncating string with embedded nuls
2: In readChar(file, size, TRUE) : truncating string with embedded nuls
3: In readChar(file, size, TRUE) : truncating string with embedded nuls
4: In readChar(file, size, TRUE) : truncating string with embedded nuls
5: In readChar(file, size, TRUE) : truncating string with embedded nuls
6: In readChar(file, size, TRUE) : truncating string with embedded nuls
7: In readChar(file, size, TRUE) : truncating string with embedded nuls
read_tsv(file.path(
"tables",
"scrnaseq",
"moderated_lfc_leg_muscle.txt"
))
Parsed with column specification:
cols(
gene_id = [31mcol_character()[39m,
sc_mean = [32mcol_double()[39m,
sc_aging = [32mcol_double()[39m,
sc_clust2vs1 = [32mcol_double()[39m,
sc_clust3vs12y = [32mcol_double()[39m,
bulk_engraf = [32mcol_double()[39m,
bulk_aging = [32mcol_double()[39m,
bulk_niche = [32mcol_double()[39m,
svalue_sc_aging = [32mcol_double()[39m,
svalue_sc_clust2vs1 = [32mcol_double()[39m,
svalue_sc_clust3vs12y = [32mcol_double()[39m,
svalue_bulk_engraf = [32mcol_double()[39m,
svalue_bulk_aging = [32mcol_double()[39m,
svalue_bulk_niche = [32mcol_double()[39m,
description = [31mcol_character()[39m,
gene_biotype = [31mcol_character()[39m,
chr = [32mcol_double()[39m,
ensembl_gene_id_version = [31mcol_character()[39m
)
genes_hits <-
There were 14 warnings (use warnings() to see them)
moderated_lfc_leg_muscle%>%
filter((abs(sc_aging) > 1 & svalue_sc_aging < 10^-8) |
abs(sc_clust3vs12y) > 1 & svalue_sc_clust3vs12y < 10^-8 |
abs(sc_clust2vs1) > 0.75 & svalue_sc_clust2vs1 < 10^-8) %>%
pull(gene_id)
genes_hits
[1] "mt-Co3" "mt-Atp6" "mt-Co1" "mt-Cytb"
[5] "Eef1a1" "Tpt1" "Gnas" "mt-Co2"
[9] "mt-Nd4" "Zbtb20" "Mt1" "Rpl41"
[13] "Actb" "Rplp1" "Rplp0" "Fos"
[17] "Rps3a1" "mt-Nd1" "Ubc" "Rps15a"
[21] "Rpl9" "Rps27a" "mt-Nd2" "Rpl28"
[25] "Rpl18a" "Rpl35a" "Rpl32" "Ptma"
[29] "Rpl37a" "Rpl27a" "Rora" "Rpl26"
[33] "Rpl17" "Meg3" "Rps12" "mt-Rnr2"
[37] "Rpl35" "Rpl19" "Galnt2l" "Rps18"
[41] "Rpl36" "Rps14" "Rps9" "Gm28661"
[45] "Rps23" "ENSMUSG00000052837.6" "Gpx3" "Rps29"
[49] "Rpl34" "Rps27" "Rps3" "Uba52"
[53] "Tmsb4x" "Rpl13a" "Airn" "Rps11"
[57] "Hsp90ab1" "Rpl11" "Jun" "Rpl3"
[61] "Rplp2" "Eef2" "Egr1" "Hspa8"
[65] "Rpl10a" "Sparc" "Rps13" "Tmsb10"
[69] "Rps15" "Rpl24" "Rack1" "Rpl14"
[73] "Rpl12" "Rpl10" "Mt2" "Rpl7a-ps12"
[77] "Rpl29" "Nfia" "Pakap_ENSMUSG00000038729.24" "Rps25"
[81] "H3f3a" "Cd63" "Apoe" "Rps6"
[85] "Zeb2" "Rpl15" "Rpl22" "Sdc4"
[89] "Ppia" "Chodl" "Zfp36l1" "Rpl4"
[93] "mt-Nd3" "ENSMUSG00000039607.16" "Rpl7a" "Nfkb1"
[97] "Naca" "Rpl5" "Filip1l" "Rpl27"
[101] "Lgals1" "Rhoj" "Rpl10-ps3" "Nfib"
[105] "Col3a1" "Itm2a" "Rpl23a" "Oaz1"
[109] "Gas1" "Mbnl2" "Ppp1r14b" "Lama2"
[113] "Gas5" "Crip1" "Vim" "Cfap77"
[117] "Eef1b2" "Gsn" "Dag1" "Rps17"
[121] "Rps7" "Gm11808" "Kxd1" "Hmgb1"
[125] "Pdlim4" "Cox8a" "Pmepa1" "Crip2"
[129] "Itm2b" "Cox4i1" "Kalrn" "Hs6st3"
[133] "Mpp7" "Runx1" "Gm28438" "Cnn3"
[137] "Cp" "Nppc" "Ltbp1" "Igfbp5"
[141] "Samd4" "Uqcrh" "Serping1" "Hspa5"
[145] "Socs3" "Crlf1" "S100a10" "Rpl31"
[149] "Serf2" "Chchd2" "Sh3glb1" "Atp5e"
[153] "Grb10" "Csmd1" "Col4a1" "Pfn1"
[157] "Tmtc2" "Cd81" "Arid5b" "Ier2"
[161] "Anxa5" "Peg3" "Gapdh" "Asb5"
[165] "Atp5b" "Cox7c" "Marcks" "Gm15500"
[169] "Atp5l" "Cox6c" "Ptms" "Eef1g"
[173] "Gxylt2" "Myl6" "Anxa2" "Gal"
[177] "Pdzd2" "Cd82" "Cavin2" "Kcnma1"
[181] "Calr" "Acta2" "Anxa6" "H2az1"
[185] "Capns1" "Emp1" "Cav1" "Serpinh1"
[189] "Hsp90b1" "Tagln" "Ccnd1" "Col4a2"
[193] "Atp1a2" "Msc" "Col6a1" "Mest"
[197] "Tnxb" "Igf1" "Hmgn2" "Timp3"
[201] "Glis3" "Igfbp4" "Aff1" "Ankrd10"
[205] "Gm48228" "Lsm6" "9030624G23Rik" "Ntn4"
[209] "Anxa1" "Myo1d" "Sugct" "9530026P05Rik"
[213] "Cdkn1c" "Spock3" "Dnah7a" "Dgkg"
[217] "Thsd7a" "Grid2" "Ccl11" "Stmn1"
[221] "Mbd1" "Gm26802" "Sorbs2" "Myog"
[225] "Col8a1" "Ier5l" "Eya2" "Frmpd4"
[229] "Iigp1" "P2ry14" "6030407O03Rik" "Kif21a"
[233] "Gm7536" "ENSMUSG00000031842.14" "Cenpa" "Ccnb2"
[237] "Ctnna2" "Pclaf"
Warning messages:
1: In readChar(file, size, TRUE) : truncating string with embedded nuls
2: In readChar(file, size, TRUE) : truncating string with embedded nuls
3: In readChar(file, size, TRUE) : truncating string with embedded nuls
4: In readChar(file, size, TRUE) : truncating string with embedded nuls
5: In readChar(file, size, TRUE) : truncating string with embedded nuls
6: In readChar(file, size, TRUE) : truncating string with embedded nuls
7: In readChar(file, size, TRUE) : truncating string with embedded nuls
p1 <-
plotHeatmap(sce10x_stem,
color =colorRampPalette(RColorBrewer::brewer.pal(n = 11, name ="RdBu"))(11),
features=genes_hits,
colour_columns_by=c("clusters_condition"),
# cluster_cols=FALSE,
cluster_rows=TRUE,
center=TRUE,
# zlim= c(-3,3),
order_columns_by=c("clusters_condition", "sizeFactor"),
# gaps_row = seq(0,5*5,by=5),
symmetric=TRUE
)
p1
ggsave( file.path(figures_dir, "heatmaps", "stem_aging_de_genes_heatmap.pdf"), p1)
p1 <-
plotHeatmap(sce10x_stem,
color =colorRampPalette(RColorBrewer::brewer.pal(n = 9, name ="YlGnBu"))(18),
features=genes_hits,
colour_columns_by=c("clusters_condition"),
# cluster_cols=FALSE,
cluster_rows=TRUE,
# center=TRUE,
# zlim= c(-3,3),
order_columns_by=c("clusters_condition", "sizeFactor"),
# gaps_row = seq(0,5*5,by=5),
#symmetric=TRUE
)
p1
ggsave( file.path(figures_dir, "heatmaps", "stem_aging_de_genes_heatmap_noncentered.pdf"), p1)
Saving 14 x 30 in image
sessionInfo()
R version 4.0.2 (2020-06-22)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 18.04.5 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/blas/libblas.so.3.7.1
LAPACK: /usr/lib/x86_64-linux-gnu/lapack/liblapack.so.3.7.1
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_US.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=en_US.UTF-8 LC_MESSAGES=en_US.UTF-8 LC_PAPER=en_US.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] parallel stats4 stats graphics grDevices utils datasets methods base
other attached packages:
[1] pheatmap_1.0.12 scater_1.16.2 scran_1.16.0 SingleCellExperiment_1.10.1
[5] SummarizedExperiment_1.18.2 DelayedArray_0.14.1 matrixStats_0.56.0 Biobase_2.48.0
[9] GenomicRanges_1.40.0 GenomeInfoDb_1.24.2 IRanges_2.22.2 S4Vectors_0.26.1
[13] BiocGenerics_0.34.0 forcats_0.5.0 stringr_1.4.0 dplyr_1.0.2
[17] purrr_0.3.4 readr_1.3.1 tidyr_1.1.2 tibble_3.0.3
[21] ggplot2_3.3.2 tidyverse_1.3.0
loaded via a namespace (and not attached):
[1] bitops_1.0-6 fs_1.5.0 lubridate_1.7.9 RColorBrewer_1.1-2
[5] httr_1.4.2 rprojroot_1.3-2 tools_4.0.2 backports_1.1.9
[9] R6_2.4.1 irlba_2.3.3 vipor_0.4.5 DBI_1.1.0
[13] colorspace_1.4-1 withr_2.2.0 tidyselect_1.1.0 gridExtra_2.3
[17] compiler_4.0.2 cli_2.0.2 rvest_0.3.6 BiocNeighbors_1.6.0
[21] xml2_1.3.2 isoband_0.2.2 labeling_0.3 scales_1.1.1
[25] digest_0.6.25 rmarkdown_2.3 XVector_0.28.0 base64enc_0.1-3
[29] htmltools_0.5.0 pkgconfig_2.0.3 dbplyr_1.4.4 limma_3.44.3
[33] rlang_0.4.7 readxl_1.3.1 rstudioapi_0.11 DelayedMatrixStats_1.10.1
[37] farver_2.0.3 generics_0.0.2 jsonlite_1.7.1 BiocParallel_1.22.0
[41] RCurl_1.98-1.2 magrittr_1.5 BiocSingular_1.4.0 GenomeInfoDbData_1.2.3
[45] Matrix_1.2-18 Rcpp_1.0.5 ggbeeswarm_0.6.0 munsell_0.5.0
[49] fansi_0.4.1 viridis_0.5.1 lifecycle_0.2.0 yaml_2.2.1
[53] stringi_1.5.3 edgeR_3.30.3 MASS_7.3-52 zlibbioc_1.34.0
[57] grid_4.0.2 blob_1.2.1 dqrng_0.2.1 crayon_1.3.4
[61] lattice_0.20-41 cowplot_1.1.0 haven_2.3.1 hms_0.5.3
[65] locfit_1.5-9.4 knitr_1.29 pillar_1.4.6 igraph_1.2.5
[69] reprex_0.3.0 glue_1.4.2 evaluate_0.14 packrat_0.5.0
[73] modelr_0.1.8 vctrs_0.3.4 cellranger_1.1.0 gtable_0.3.0
[77] assertthat_0.2.1 xfun_0.17 rsvd_1.0.3 broom_0.7.0
[81] viridisLite_0.3.0 beeswarm_0.2.3 statmod_1.4.34 ellipsis_0.3.1